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Total and fractional densities of states from caloric relations

S. F. Chekmarev and S. V. Krivov
Institute of Thermophysics, Novosibirsk 630090, Russia

~Received 8 October 1997!

An approach that allows a detailed investigation of a system possessing a large number of inherent structures
is proposed: the total density of states~DS! is suggested to be calculated from the total caloric relation, and the
fractional DSs for the structures of interest from the corresponding fractional relations. The latter are found by
confinement of the system to the respective catchment basins on the potential surface. The approach is illus-
trated for the 13-atom Lennard-Jones cluster.@S1063-651X~98!05801-2#

PACS number~s!: 05.20.2y, 36.40.2c
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A many-body system that is characterized by a large nu
ber of inherent structures~mechanically stable atomic con
figurations! remains a challenge to statistical mechanics@1#.
A typical example are clusters@2,3#. In a methodological
respect, the Lennard-Jones (LJ-n) clusters are best suited fo
consideration since, on one hand, they present the sim
and most workable system, and on the other, they display
characteristic set of the problems in full measure. In parti
lar, even for the LJ-13 cluster the number of geometrica
distinct structures~isomers! is about 103 @4#, and it is ex-
pected to grow with cluster size exponentially@5#.

A general approach to the description of such syste
consists in partitioning the potential surface into catchm
basins; each basin surrounds a local minimum@6#. In particu-
lar, calculation of the density of states~DS! is then reduced
to two complementary but feasible steps:~i! to consider a
manifold of the minima~isomers!, and ~ii ! to calculate the
DS for each basin.

The interaction potential being known, all the informatio
necessary to realize this approach can, in principle, be
tained with the help of molecular dynamics~or Monte Carlo!
simulations combined with quenching at regular intervals@6#
~see @3,7# for the current state of the art!. However, two
problems persist here. The first is that both methods sam
the potential surface not uniformly, but according to the fra
tional DSs of states for the isomers. As a result, for syste
such as, e.g., LJ-55~where the number of isomers is es
mated to reach 1021 @5#! most of high-lying minima may no
occur at all@8#. The second problem arises when one cal
lates the DSs. If the harmonic approximation were valid, o
would need only the characteristics of the minima@9#. Un-
fortunately, it is not quite consistent with the cases of act
interest~isomerization, melting, etc.@2,3#!. As a result, one
faces the need to take anharmonic effects into accoun
principle, this is achievable@8,10#, but the reverse of the
success is that many details about every basin mus
known.

A peculiarity of the situation is that such detailed info
mation is often excessive, which is certainly true for t
equilibrium and also for small deviations from it. All tha
one actually needs in many cases is the total DS and s
fractional DSs. The former describes the behavior of the s
tem as a whole, and the latter characterize the isomer
interest. The fractional DSs also allow one to estimate
interplay between particular isomers, and moreover, w
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they are coupled with the total DS, the interplay betwe
certain isomers and all others.

Calculations of the total DS are quite practicable curren
@11–13#. For this purpose the multiple histogram meth
@14# and the method based on adiabatic invariants@15# are in
use. Though these methods can possibly be modified to
low the calculation of the fractional DSs as well, anoth
method can also be applied, which is easy to implement
offers a uniform procedure to calculate both the total a
fractional DSs. It is currently employed in thermodynami
to calculate the entropy via caloric data. In particular, t
relations between system’s total energy and temperature~so-
called caloric curves! can be used for this purpose. The c
loric curves belong to the characteristics that have been
tensively studied for many systems, among them for clus
@16#. Moreover, some caloric data are available from expe
ments, which can be incorporated into the caloric curv
~see, e.g.,@17#!. This may be a considerable advantage of t
method, particularly in application to the systems for whi
the interaction potential is not well defined~all other meth-
ods need this potential be known explicitly!.

Specifically, in this work the total DS is suggested to
calculated from the total caloric curve, and the fractional D
from the respective fractional caloric curves. The latter
found by confining the system to particular catchment bas
on the potential surface@18#.

This approach also allows one to verify the correspo
dence between molecular dynamics simulation results
the predictions of statistical mechanics. Such a verificat
may be necessary for complex systems, where both the s
lations and theoretical predictions are challenging. For t
purpose, the probability for the system to be found in t
basin corresponding to a particular isomer can be estim
as the relative density of states for this isomer, and the
can be compared with the relative residence time of the s
tem in this basin, which is found by direct counting in th
course of simulation@19#.

In this paper we demonstrate the proposed approach
the LJ-13 cluster. Free clusters with no overall translat
and rotation were under consideration. The system of N
tonian equations governing the atomic motion in the clus
was solved by using the numerical algorithm of Ref.@20#,
the time step being equal to 0.0025~here and below we
assume the LJ units:s51, «51, and alsom51, m is
the atomic mass!.
2445 © 1998 The American Physical Society
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Since clusters are susceptible to a decay at high ener
statistics were collected in a twofold manner: both ove
molecular dynamics run for a given cluster and over an
semble of the clusters. To form the ensemble, a stocha
molecular dynamics trajectory@21# was issued, from which
the points were selected for a desirable cluster total ene
E. Then cluster overall translation and rotation were elim
nated, and cluster total energy was fitted toE by rescaling
the atomic velocities. This was followed by a relaxation r
of Newtonian molecular dynamics. The number of copies
the ensemble was 50.

When the ensemble for a givenE has been formed, a
molecular dynamics run, typically 63105 time steps for ev-
ery copy, was executed to collect statistics. If a cluster
experienced a decay, the run was terminated, but the po
obtained prior to the act of decay contributed to the statist
Every 250 time steps each of the clusters was quenche
order to specify the cluster isomer to which the current r
resentative point should be related.

To group the isomers~and the basins to be associated w
them! into equivalence classes@6#, the following rule was
accepted: the isomers were taken to be equivalent if t
possessed the same minimum energy and the spectru
normal frequencies. Neither the permutations of atoms
cluster nor the inversion of atomic coordinates affect th
quantities. The same is valid for rigid rotations. We th
conclude that 2n! basins, each containing all possible orie
tations of the cluster, correspond to every distinct isom
(2n! is the order of the complete nuclear permutation a
inversion group@22#!. Since the set of orientations is con
tinuous, these basins are a sort of valley rather than the
basins@23#.

The total caloric curve was calculated in the usual fash
@16#. To calculate fractional caloric curves, confinement
molecular dynamics trajectory to a catchment basin@18# was
applied: The system was placed into one of the basins
responding to the given isomer, and a molecular dynam
run for a givenE was executed. At regular intervals th
location of the system was checked. If the system was fo
in another, neighboring basin, the checking interval was
duced until the position of the boundary was fixed with
accuracy of one time step@24#. Then the trajectory was sub
jected to a reverse process at the last point belonging to
true basin: atomic velocities changed their signs and exp
enced a small uniform random scattering@25#. This was fol-
lowed by the correction of the cluster total energy, and lin
and angular momenta. Since the system was able to leav
basin only at high total energies when nonlinear effects
pronounced, the divergency of phase point trajectories@26#,
amplified by the velocity scattering at the reverse point,
to rapid deviation of the reversed trajectory from the ‘‘fo
ward’’ one. Due to this, a proper level of stochastization
the system was maintained.

The conditions under consideration correspond to a
crocanonical ensemble (E5( ipi

2/2m1V5const) with clus-
ter total linearP5( ipi and angularL5( ir i3pi momenta,
and also its center-of-mass positionR5( imr i /M being zero
(r i andpi are the coordinates and momenta ofi th atom,M
5nm the total mass,n the number of atoms, andV the
potential energy of the cluster!. In the general case of non
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linear atomic configurations, which is assumed hereafter,
phase volume associated with the ensemble is

G~E!5E dr ~3n!dp~3n!d~R!d~P!d~L !Q~E2H !, ~1!

wheredr (3n) anddp(3n) are 3n-dimensional elements of th
volume in configuration and momentum space, respectiv
d the delta function,Q the step function, andH5( ipi

2/2m
1V the cluster Hamiltonian.

The integrals over momenta in Eq.~1! can be carried out
@27# to yield

G~E!5CE dr ~3n!d~R!
~E2V!N/2

~ I 1I 2I 3!1/2G~N/211!
Q~E2V!,

~2!

whereC5(2p)N/2m3n/2/M3/2, N53n26 is the number of
vibrational degrees of freedom in the cluster,I k(k51,2,3) its
principal momenta of inertia, andG the gamma function.

For further calculation ofG(E), let us separate the poten
tial surface into the basins. Since the number of distingui
able atomic configurations is equal to 2n!/h (h is the order
of the point group of current configuration!, G(E) may be
written as

G~E!5(
r

~2n!/hr !Gr~E!, ~3!

wherehr is the order of the point group forr th isomer at its
minimum energy, andGr(E) is the phase volume forr th
isomer, which is defined by the same expression asG(E) ~2!
except that the integral is taken over the basin associ
with a particularr th isomer: the atoms are labeled in a giv
order, there is no inversion of atomic coordinates, but
orientations of the cluster are possible. Though most of
configurations in the basin do not retain the type of symm

FIG. 1. The total density of states: the solid line corresponds
this work, and the squares to Ref.@12#, where a combination of the
methods of Refs.@14# and @15# was used.
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try of the minimum, the factor 1/hr is assigned to the whole
basin. This implies that the number of atomic configuratio
of orderh in the basin is equal tohr /h; it is in the line with
the results of group-theoretical consideration of symme
properties of potential surfaces@23# as well as with the ar-
guments used in the theory of reaction path degeneracy~see,
e.g.,@28#!.

With the factorn! in Eq. ~3! omitted ~the correct Boltz-
mann counting@29#!, the total DS is

r~E!5dG/dE5(
r

~2/hr !r r~E!, ~4!

wherer r(E)5dGr /dE is the DS for a particularr th isomer.
Correspondingly, the probability that the system will
found in a basin related tor th isomer is estimated as

f r~E!5~2/hr !r r~E!/r~E!. ~5!

As one can find from Eq.~2!

dlnG/dE5N/~2^Ekin&!, ~6!

where^Ekin& is the mean kinetic energy. This equation is
analog of the thermodynamic equationTdS5dE, whereS

FIG. 2. Caloric curves: solid circles correspond to the total
loric curve, and the other symbols, numbered as given in Table
the curves for particular isomers. The total energy is counted f
the ground state isomer minimum energy.

TABLE I. Characteristics of isomers.

Isomers U0 n̄ h

0 244.326801 1.750316 120
1 241.471979 1.636509 2
2 241.444597 1.635673 2
3 241.394398 1.635996 2
4 240.758513 1.638231 4
8 240.670170 1.632131 1
s

y

5kBlnG is the entropy (kB is the Boltzmann constant!, and
T52^Ekin&/NkB is the temperature. Similar equations ar
valid for every isomer.

With the characteristics of the isomers and the calo
curves being known, Eq.~6! can be numerically integrated to
give G(E) or Gr(E), depending on which of the caloric
curves, total or fractional, is used. The arbitrary factor a
pearing in the integral is found by matching the solution,
the lowest energy limit, to the harmonic one, which
Grh(E)58p2(E2U0

(r ))N/@G(N11) n̄ r
N#, whereU0

(r ) is the

minimum energy for ther th isomer,n̄ r5() i 51
N n i

(r ))1/N is the
geometrical mean of normal frequenciesnk

(r ) ; the factor 8p2

is due to various orientations of the cluster. When calculati
G(E), the harmonic solution for the ground state isomer
used. To circumvent the difficulties that one meets in a
tempting a direct matching~see, e.g.,@12#!, the right-hand
part of Eq.~6! was divided into two parts: the harmonic one
which is N/E in accordance with the equipartition principle
and the rest,N@1/(2^Ekin&)21/E#, which is an anharmonic
correction. The first part is integrated analytically, whic
provides an automatic matching to the harmonic solutio
Figure 1 shows the total DS so obtained from the total c
loric curve presented in Fig. 2.

-
to
m

FIG. 3. Relative residence time for the isomers:~a! the ground
state isomer, and~b! the excited state isomers. The symbols corr
spond to direct counting, and the lines show the theoretical pred
tions based on Eq.~5!, and the data of Table I and Fig. 2.
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As particular isomers to be considered, the ground s
isomer and five of the low-lying excited-state ones were c
sen ~Table I; the isomers are numbered according to th
order in the energy spectrum, with 0 standing for the grou
state isomer!. The fractional caloric curves for these isome
are shown in Fig. 2. The total number of the isomers wh
occurred in the course of simulations is 1012.

Figure 3 compares the relative residence time for the
mers estimated according to Eq.~5! with that found by direct
counting. As seen, the data are in excellent agreement.

A significance of Fig. 3 is twofold: not only does it testif
to the feasibility of the proposed approach but also presen
direct test for some issues of general importance. In part
lar, it indicates that the system visited a range of phase sp
ys

m

te
-

ir
d

h

-

a
u-
ce,

in our case the range corresponding to the basins assoc
with a given isomer, exactly as statistical mechanics sugg
by the hypothesis of equala priori probabilities@29#, i.e.,
according to the contribution of this range to the total DS

Another important issue is incorporating the properties
symmetry into the phase volume~3!. Figure 3 unambigu-
ously evidences that ifGr(E) is calculated by integration
overall atomic configurations in the basin, the point group
symmetry characteristic of the basin minimum should be
lated to the whole basin.

The work was partly supported by the International S
ence Foundations, Grant No. NR1000.
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