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Total and fractional densities of states from caloric relations
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An approach that allows a detailed investigation of a system possessing a large number of inherent structures
is proposed: the total density of stat&S) is suggested to be calculated from the total caloric relation, and the
fractional DSs for the structures of interest from the corresponding fractional relations. The latter are found by
confinement of the system to the respective catchment basins on the potential surface. The approach is illus-
trated for the 13-atom Lennard-Jones clust8i063-651X98)05801-3

PACS numbegps): 05.20-y, 36.40—c

A many-body system that is characterized by a large numthey are coupled with the total DS, the interplay between
ber of inherent structure@nechanically stable atomic con- certain isomers and all others.
figurationg remains a challenge to statistical mechaiids Calculations of the total DS are quite practicable currently
A typical example are clusteri®,3]. In a methodological [11-13. For this purpose the multiple histogram method
respect, the Lennard-Jones ()Jclusters are best suited for [14] and the method based on adiabatic invarighf are in
consideration since, on one hand, they present the simplegse. Though these methods can possibly be modified to al-
and most workable system, and on the other, they display thiew the calculation of the fractional DSs as well, another
characteristic set of the problems in full measure. In particumethod can also be applied, which is easy to implement and
lar, even for the LJ-13 cluster the number of geometricallyoffers a uniform procedure to calculate both the total and
distinct structuregisomers is about 16 [4], and it is ex- fractional DSs. It is currently employed in thermodynamics
pected to grow with cluster size exponentidlB). to calculate the entropy via caloric data. In particular, the

A general approach to the description of such systemselations between system’s total energy and temperésore
consists in partitioning the potential surface into catchmentalled caloric curvescan be used for this purpose. The ca-
basins; each basin surrounds a local minim@inIn particu-  loric curves belong to the characteristics that have been ex-
lar, calculation of the density of staté®S) is then reduced tensively studied for many systems, among them for clusters
to two complementary but feasible steggd: to consider a [16]. Moreover, some caloric data are available from experi-
manifold of the minima(isomers, and (ii) to calculate the ments, which can be incorporated into the caloric curves
DS for each basin. (see, e.g[17]). This may be a considerable advantage of this

The interaction potential being known, all the information method, particularly in application to the systems for which
necessary to realize this approach can, in principle, be olthe interaction potential is not well defingdll other meth-
tained with the help of molecular dynami@s Monte Carlp  ods need this potential be known explicjtly
simulations combined with quenching at regular interyéls Specifically, in this work the total DS is suggested to be
(see[3,7] for the current state of the artHowever, two calculated from the total caloric curve, and the fractional DSs
problems persist here. The first is that both methods samplieom the respective fractional caloric curves. The latter are
the potential surface not uniformly, but according to the frac-found by confining the system to particular catchment basins
tional DSs of states for the isomers. As a result, for systemen the potential surfacgl8].
such as, e.g., LJ-58wvhere the number of isomers is esti- This approach also allows one to verify the correspon-
mated to reach 18 [5]) most of high-lying minima may not dence between molecular dynamics simulation results and
occur at all[8]. The second problem arises when one calcuthe predictions of statistical mechanics. Such a verification
lates the DSs. If the harmonic approximation were valid, onenay be necessary for complex systems, where both the simu-
would need only the characteristics of the minif@. Un-  lations and theoretical predictions are challenging. For this
fortunately, it is not quite consistent with the cases of actuapurpose, the probability for the system to be found in the
interest(isomerization, melting, etd2,3]). As a result, one basin corresponding to a particular isomer can be estimated
faces the need to take anharmonic effects into account. las the relative density of states for this isomer, and then it
principle, this is achievabl§8,10], but the reverse of the can be compared with the relative residence time of the sys-
success is that many details about every basin must bem in this basin, which is found by direct counting in the
known. course of simulatio19].

A peculiarity of the situation is that such detailed infor- In this paper we demonstrate the proposed approach for
mation is often excessive, which is certainly true for thethe LJ-13 cluster. Free clusters with no overall translation
equilibrium and also for small deviations from it. All that and rotation were under consideration. The system of New-
one actually needs in many cases is the total DS and sonienian equations governing the atomic motion in the cluster
fractional DSs. The former describes the behavior of the syswas solved by using the numerical algorithm of Re0],
tem as a whole, and the latter characterize the isomers d¢he time step being equal to 0.00ZBere and below we
interest. The fractional DSs also allow one to estimate th@ssume the LJ unitsr=1, e=1, and alsom=1, m s
interplay between particular isomers, and moreover, whethe atomic mags
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Since clusters are susceptible to a decay at high energie! 100 —
statistics were collected in a twofold manner: both over a
molecular dynamics run for a given cluster and over an en- .
semble of the clusters. To form the ensemble, a stochasti
molecular dynamics trajectofy21] was issued, from which ;50 —
the points were selected for a desirable cluster total energy
E. Then cluster overall translation and rotation were elimi-
nated, and cluster total energy was fittedBdy rescaling
the atomic velocities. This was followed by a relaxation run
of Newtonian molecular dynamics. The number of copies ine
the ensemble was 50.

When the ensemble for a giveh has been formed, a
molecular dynamics run, typically>610° time steps for ev-
ery copy, was executed to collect statistics. If a cluster had
experienced a decay, the run was terminated, but the point i
obtained prior to the act of decay contributed to the statistics.

Every 250 time steps each of the clusters was quenched il g — 77—
order to specify the cluster isomer to which the current rep- 0 s 8 12 15 20
resentative point should be related. TOTAL ENERGY

To group the isomerg&nd the basins to be associated with ) o
them into equivalence classds], the following rule was " FIG. kl The ;otal density of states: Lhe solid Ilne_ cor_resp?n:s to
accepted: the isomers were taken to be equivalent if the%'sﬂ‘}"é c:jrs ’o?nsetf s[elz?:ﬁ:je[si;? Vsiza’s‘g q ere a combination of the
possessed the same minimum energy and the spectrum of ] '
normal frequencies. Neither the permutations of atoms iffnear atomic configurations, which is assumed hereafter, the
cluste_r_nor the inversion of gt0m|c _C(_)ordlnat_es affect thes‘f)hase volume associated with the ensemble is
guantities. The same is valid for rigid rotations. We thus
conclude that 8! basins, each containing all possible orien-
tations of the cluster, correspond to every distinct isomer
(2n! is the order of the complete nuclear permutation and
inversion group[22]). Since the set of orientations is con- wheredr®™ anddp®" are 3-dimensional elements of the
tinuous, these basins are a sort of valley rather than the trueolume in configuration and momentum space, respectively,
basins[23]. 6 the delta function® the step function, and =Eipi2/2m

The total caloric curve was calculated in the usual fashiort+V the cluster Hamiltonian.
[16]. To calculate fractional caloric curves, confinement of The integrals over momenta in E(.) can be carried out
molecular dynamics trajectory to a catchment b§&Bj was  [27] to yield
applied: The system was placed into one of the basins cor-
responding to the given isomer, and a molecular dynamics (E-V)N?

, ; : G(E):Cf dr®Ws(R) O(E-V),

run for a givenE was executed. At regular intervals the (141,01 5) Y2 (N/2+1)
location of the system was checked. If the system was found 2
in another, neighboring basin, the checking interval was re-
duced until the position of the boundary was fixed with anwhereC= (27)N?m®"?/M%?2 ~ N=3n-6 is the number of
accuracy of one time stdf24]. Then the trajectory was sub- vibrational degrees of freedom in the clustg(k=1,2,3) its
jected to a reverse process at the last point belonging to thgrincipal momenta of inertia, and the gamma function.
true basin: atomic velocities changed their signs and experi- For further calculation of5(E), let us separate the poten-
enced a small uniform random scatter{@]. This was fol- tial surface into the basins. Since the number of distinguish-
lowed by the correction of the cluster total energy, and lineaable atomic configurations is equal te!2h (h is the order
and angular momenta. Since the system was able to leave thé the point group of current configuratipnG(E) may be
basin only at high total energies when nonlinear effects arevritten as
pronounced, the divergency of phase point trajectdi2&s,
amplified by the velocity scattering at the reverse point, led

TY OF STA

In DENS

-50 —

G(E)zfdr(S“)dp(S”)é(R)6(P)5(L)®(E—H), )

to rapid deviation of the reversed trajectory from the “for- G(E):Z (2n!/h)G((E), )
ward” one. Due to this, a proper level of stochastization in
the system was maintained. whereh, is the order of the point group fatth isomer at its

The conditions under consideration correspond to a miminimum energy, ands,(E) is the phase volume forth
crocanonical ensembleEE Eipf/2m+v=const) with clus-  isomer, which is defined by the same expressioG£g8) (2)
ter total linearP=Z=,;p; and angulalL =X;r;Xp; momenta, except that the integral is taken over the basin associated
and also its center-of-mass positiBs Z;mr; /M being zero  with a particularth isomer: the atoms are labeled in a given
(r; andp; are the coordinates and momentai thf atom, M order, there is no inversion of atomic coordinates, but all
=nm the total massn the number of atoms, and the orientations of the cluster are possible. Though most of the

potential energy of the clusterin the general case of non- configurations in the basin do not retain the type of symme-



57 BRIEF REPORTS 2447

W10
0-4 3.4 =
6 —| . w i
1-4+ 4-0 % % %
2 - - O A a
_— x 8 ahty @ 05 (a)
g o0 g g o
w % w
Wy e X > g E 7
[&] <C
= e X' ]
= 5 a xo < 0.0 — 1 T T T 1 T 1
x . +8 0 4 8 12 16 20
Z PS * B TOTAL ENERGY
s 2 &
s 2 [ + 0.16 —
a %M
14 & +8 .
]
e i‘gg
°£'$'|'|'|'| = 0127
0 4 8 12 16 20 :
TOTAL ENERGY S R
FIG. 2. Caloric curves: solid circles correspond to the total ca—é 0.08 —
loric curve, and the other symbols, numbered as given in Table I, t w '
the curves for particular isomers. The total energy is counted fron
the ground state isomer minimum energy. Z 7
<t
try of the minimum, the factor b/ is assigned to the whole & 0.04 —
basin. This implies that the number of atomic configurations
of orderh in the basin is equal th, /h; it is in the line with -
the results of group-theoretical consideration of symmetry
properties of potential surfacé&3] as well as with the ar- 0.00 —|
guments used in the theory of reaction path degeneisas;,
0 4 8 12 16 20
e.g.,[28)). _ _ TOTAL ENERGY
With the factorn! in Eq. (3) omitted (the correct Boltz-
mann counting29]), the total DS is FIG. 3. Relative residence time for the isomd: the ground
state isomer, an¢b) the excited state isomers. The symbols corre-
spond to direct counting, and the lines show the theoretical predic-
P(E):dG/dE:Z (2Ihe)pe(E), (4) tions based on Eq5), and the data of Table | and Fig. 2.

=kgInG is the entropy kg is the Boltzmann constantand
T=2(E\n)/Nkg is the temperature. Similar equations are
valid for every isomer.

With the characteristics of the isomers and the caloric

wherep,(E)=dG, /dE is the DS for a particularth isomer.
Correspondingly, the probability that the system will be
found in a basin related tath isomer is estimated as

_ curves being known, E@6) can be numerically integrated to
f(E)=(2M)pc(E)/p(E). © give G(E) or G,(E), depending on which of the caloric
As one can find from Eq(2) curves, total or fractional, is used. The arbitrary factor ap-
pearing in the integral is found by matching the solution, in
dInG/dE=N/(2(Ein)), (6) the lowest energy limit, to the harmonic one, which is

Gn(E)=872(E—UMMN[T(N+1)»N], whereu{ is the
minimum energy for theth isomer,v, = (1IN, v{V) N is the
geometrical mean of normal frequenciéﬁ) : the factor &r2

where(E,;,) is the mean kinetic energy. This equation is an
analog of the thermodynamic equatidndS=dE, whereS

TABLE |. Characteristics of isomers. is due to various orientations of the cluster. When calculating
G(E), the harmonic solution for the ground state isomer is
Isomers Uo o h used. To circumvent the difficulties that one meets in at-
tempting a direct matchingsee, e.g.[12]), the right-hand
—44.326801 1.750316 120 part of Eq.(6) was divided into two parts: the harmonic one,
—41.471979 1.636509 2 which isN/E in accordance with the equipartition principle,
—41.444597 1.635673 and the restN[1/(2(E,;,)) — 1/E], which is an anharmonic

2
—41.394398 1.635996 2 correction. The first part is integrated analytically, which
—40.758513 1.638231 4 provides an automatic matching to the harmonic solution.
—40.670170 1.632131 1 Figure 1 shows the total DS so obtained from the total ca-
loric curve presented in Fig. 2.
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As particular isomers to be considered, the ground staten our case the range corresponding to the basins associated
isomer and five of the low-lying excited-state ones were chowith a given isomer, exactly as statistical mechanics suggests
sen(Table I; the isomers are numbered according to theiby the hypothesis of equal priori probabilities[29], i.e.,
order in the energy spectrum, with 0 standing for the groundccording to the contribution of this range to the total DS.
state isomer The fractional caloric curves for these isomers  Another important issue is incorporating the properties of
are shown in Fig. 2. The total number of the isomers whichsymmetry into the phase volum@). Figure 3 unambigu-
occurred in the course of simulations is 1012. ously evidences that i6G,(E) is calculated by integration

Figure 3 compares the relative residence time for the isoeverall atomic configurations in the basin, the point group of
mers estimated according to E§) with that found by direct symmetry characteristic of the basin minimum should be re-
counting. As seen, the data are in excellent agreement.  lated to the whole basin.

A significance of Fig. 3 is twofold: not only does it testify
to the feasibility of the proposed approach but also presents a
direct test for some issues of general importance. In particu- The work was partly supported by the International Sci-

lar, it indicates that the system visited a range of phase spacence Foundations, Grant No. NR1000.
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